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Abstract o

The exact eigenenergy spectrum of an electron is calculated in a

quantum well within an in-plane magnetic field. The numerical solutions for

the excited energy states as well as the ground state energy are found for

various quantum-well widths and barrier heights. The cyclotron orbits are

considerably affected by the quantum well. The energy levels higher than

the potential height of the quantum well and the energy levels lower than

the potential height of the quantum well show quite different behaviors.

These are explained with the properties of the combined potential and the

wave function inherent to the system.
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I. Introduction

The properties of electrons confined in semiconductor heterostructures

have been studied for different situations. The carriers in two-dimensional

systems subjected to a magnetic field perpendicular to the layers are

completely quantized into Landau levels, which have been extensively studied

with respect to the quantized Hall effect[l] and Shubnikov-de-Haas

oscillations [2]. In this case, since the magnetic field is in the same

direction as the confining electric field, the Hamiltonian can be separated

into an electric part leading to subbands and a magnetic part leading to

Landau levels. For any other orientation, this separation is not possible

any-more. Thus, in an external magnetic field parallel to the interface,

the situation becomes more complicated. By studying the effects of magnetic

field on the optical transitions, we may obtain the details of the subband

structure[3,4]. Although an in-plane magnetic field usually has little

effect on two-dimensional properties, it can strongly affect the spectrum of

intersubband optical transitions[5J. If the magnetic length aH - (M/p)

where # and w are the effective mass and the cyclotron frequency of an

electron, respectively, is made comparable to the quantum well width by

increasing the magnitude of the magnetic field, the problem is even more

complicated because the confining electric field and the magnetic field

contribute almost the same weight to the energy levels of electrons. There

are several papers in theory[6-91 as well as in experiment[10-12] which

study the effect of in-plane magnetic fields on two-dimensional systems.

Recently Klama(8] has reported the quantization rules and analytic

expressions of the electron energy spectrum in a thin film within a
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longitudinal magnetic field. In his paper, the electronic motion is always

inside the quantum well because the potential height is taken to be

infinite. The eigenenergies of two-dimensional electrons subjected to a

tilted magnetic field are solved analytically in a parabolic potential

well(10], which is useful for the analysis of transport measurements in

their experiments. Oliveira et al[9] have found the electron binding energy

in a quantum well of n-type GaAs-AlxGa l AS heterostructures by a self-

consistent solution of the Poisson and Schr6dinger equations. Most of their

calculations were done for a couple of the lowest subbands in various

systems.

Since the harmonic oscillator is one of the exactly solvable

problems(13J, the exact eigenvalues for a quantum well under an in-plane

magnetic field can be obtained numerically. In this paper we present the

numerical solutions for the energy spectrum of electrons in a quantum well

with a finite potential height V0 and well width W comparable to the

magnetic length. The eigenenergy spectrum of an infinite potential well is

also calculated for comparison. In the calculations, the normalized

potential height (Vo/)k) and well width (jW/aH) are used to see the results

for an arbitrary potential height V0 and well width W.

II. Theox

Let us consider a quantum well with well width W and the potential

height V0 in an external applied longitudinal DC magnetic field. The

uniform external magnetic field f - (0, 0, B0 ) oriented in the plane of the

layer can be described by the vector potential A - (0, B0x, 0). In the

direction parallel to I the electrons have a free motion, whereas in the
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plane perpendicular to B they are subjected to the combined potential of the

magnetic field and the quantum well. Then, the Hamiltonian for an electron

in a potential well with a magnetic field in the xz-plane can be written as

1 2 2

H -I (P2 + P2) + Py eB + V(x) (i)

where p is the effective mass and V(x) is the potential energy of the

electron in the well. Correspondingly, the Schrodinger equation is given by

HO(r) - E*(') (2)

Due to the translational symmetry in the y- and z-directions, the wave

function can be written as

i(qyy + qzz)

- x(x) e (3)

Substituting this wave function into the Schr6dinger equation (2), we obtain

the effective one-dimensional Schr6dinger equation

+(X 2 (X _ Xo )2 + ()X)

dx2 2

where
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P2
-E Z (5)

2M2

and we have used w - eB0 /p for the cyclotron frequency, x0 - aH qy for the

position of the orbit center and aH - (K/pw)l/2 for the magnetic length.

Now the two boundaries caused by the quantum well can be determined

depending on the location of the orbit center x For the general case, we

assume the left and right boundaries of the well are located at xL7 a and

xR - b (a<b), respectively, i.e.,

0 for a < x < b
V(x) - (6)

1 V 0  for x < a, b < x

Introducing the dimensionless length scale - r2x/aH for the x-

coordinate, the Schr6dinger equation for the combined potential is divided

into three regions:

d+ C_ _ 1 ( _ 0) 2) XI() 0 for .9A < < 622 (7a)
2 4

____ rU 1 e o) 2) X11(C) -O for f A (7b)
C2 140 4 +

- (- %)) M -0 for < (7c)
d42 + k IIa
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Comparing the above Schrodinger equations (7a), (7b), and (7c) with the

Weber equation [14],

-z2 0(z) _ 0 (8)

we can identify the eigenvalues of the system:

_ m + i for 2 a < < T b (9)

2 aH  a.

and

m' + I for < Fa, or (1< (10)
2 aH a.

The quantum numbers m and m' are related each other by,

(m - m' ) ) - V 0  . (11)

The solution of equation (8) is the well-known Weber function[14]:

D (z) - 2 m/2 ez 2/4 f.Fr -2 rn 2 Ft(mI I I Iz 2 - r(W/z)F (2 ." mI11z2)) (12)M r12m2 r(-m/2) [2 222

where F(alblx) is the confluent hypergeometric function(15] and r(z) is the

gama function.

From the asymptotic properties of the Weber function[14], the general

solutions of the Schr6dinger equations (7a), (7b) and (7c) may take the

following form:
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x1 (i A AD () + B D (-O) (13a)

X11 () C D M,(-0~ (13b)

-II F D , (0~ (13c)

where A, B, C and F are the normalization constants in each region. Then

the continuity of the logarithmic derivatives of the wave functions at both

boundaries L- I2a/aH. and R- 4'2b/aH of the quantum well provides the

following equation for the energy eigenvalues:

D, m(YRD'( R ) - D , ( R)Dm (YR

D;(f )D m(-cL) + D'(- L)Dm(C) ( ( D+D )
-D'( -fL )Dm,(-YL + D;,(-EL )D (-Y) R min Rf inY)nR

(14)

where

D' (f(U (15)
3 dm

III. Results and Discussion

Making use of the recursion relations of the Weber function[14J, the

numerical solutions for mn can be obtained from Eq. (14) if the values of Vol
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L and R are given. The numerical solutions of m are illustrated in

Figs. (1) and (2) for different values of normalized potential height V0/XW

and well width W/aH . We use the potential height V0 - 5)(w and the well

width W - aH/)I2 in Fig. 1 and V0 - 10)(w and W - aH were used in Fig. 2.

In these figures, the various energy levels are plotted against the position

0 of the orbit center. In each graph the dotted line shows the boundaries

of the quantum well on a normalized scale, and the quantum number m (y-axis)

is related to the eigenenergy by e - (m + l/2)Xw. These results clearly

show two different types of energy states: (1) the states confined in the

quantum well (the lowest level in Fig. 1 and the lowest two levels in Fig.

2) and (2) the extended states (the higher levels in Figs. 1 and 2).

For the confined states (1), most of the wavefunction is pushed into

the quantum well because the eigenenergy is lower than the potential height.

As the orbit center is shifted from the center of the potential well, the

electron penetrates and spends increasingly more time inside the potential

barrier and less time in the well, resulting thus in an increase of energy.

if the orbit center is moved deep into the barrier and far away from the

quantum well, the low-level electrons see essentially a magnetic harmonic

well elevated by VO. This means that the energy versus 0 curve will

flatten out at large values of %. Hence the usual bulk Landau levels take

over except for a shift of V0 in energy. Before the bulk Landau levels take

over, we can see the crossing of the confined state and the extended stz.

in the intermediate shift of orbit center 0 in both Figs. 1 and 2. These

two states are degenerate at the moment they cross each other. If the orbit

center is shifted into the barrier, the quantum well would be elevated as
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well as changed in shape by the presence of the parabolic magnetic

potential. This means that the overall enhancement of the quantum well due

to the magnetic potential should be parabolic as the orbit center 0 is

moving away from the quantum well. Thus the eigenenergies of the confined

states in the quantum well increase parabolically as a function of the orbit

center %. Clearly the crossings of the confined states and the extended

states in Figs.l and 2 exhibit parabolic behavior. The changes in shape of

the quantum well neglecting the elevation have little effect on the

crossings because the eigenenergies of the confined states are always

limited by the barrier height V0, which is small compared to the elevation

due to the magnetic potential.

In the second case (2), the energy spacing between neighboring modes in

the energy spectrum is about )ko, but each mode makes oscillations as the

orbit center moves away from the center of the quantum well. In this case,

the electron energies are higher than the potential height V0 and the

wavefunctions are located partly within the well and partly inside the

barrier, but still confined by the magnetic potential well. The oscillatory

behavior of the eigenmodes seems to be related to the oscillating property

of the harmonic wavefunction. The harmonic wavefunction [D m(z)] has many

nodes and peaks depending on the quantum number m, and the wavefunction may

be classified as symmetric (even parity) or antisymetric (odd parity) for

the centered orbit (C0-0). The oscillations of eigenenergy in each mode

depend on the number of nodes on the wave function. Thus the number of

oscillations increases one by one as we go up to the higher levels. We also

observe that the oscillations of the eigenenergy are within the range of the
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wavepacket size (Ax - fm1/2 aH). The alternating downward and upward

concavity in energy spectrum at the middle of the quantum well seems due to

the symmetric or antisymmetric properties of the wavefunction. If the

wavefunction is symmetric, the middle peak of the wavefunction is located at

the center of the potential well for the centered orbit (%0-0). Therefore

the eigenenergy will increase if the orbit center is shifted slightly toward

barrier, resulting in the downward concavity. On the other hand, we expect

upward concavity for the antisymmetric wavefunction because its node is now

located at the lowest spot of the combined potential well. If these

arguments are correct, the wavefunction of the lowest mode should be

symmetric and have no node, the second mode should be antisymmetric and have

one node, and so on from Figs. 1 and 2. In conclusion, we can say that the

energy levels with oscillating structures are direct images of the magnetic

wave function itself in the restrcited geometry.

For the practical example of GaAs-AlxGaAs1 -x with x - 0.3, we get V0 -

0.25 eV. To match this potential height in fig.l where V0 - 5)(w, we need B

- 29 T, which corresponds to aH - 48 A. If V0 - 10)(w like in Fig. 2, a

magnetic field of B - 14 T is required. To observe these results at B - 10

T which has a magnetic length aH - 81 A, the potential height of Figs. 1 and

2 correspond to V0 - 87 and 174 meV, respectively. Even if these results

were calculated in a relatively strong magnetic field due to the computer

limit, the general features could be observed in a practical samples given

above.

Finally, the eigenenergies for an infinite potential well (V0 -- -) can

be calculated similarly with the proper boundary conditions (xlI - x -0,



xI(E-ER) - XI(C-EL) - 0) and the results are presented in Fig. 3 with a well

width W - aH . In this case, since all the electronic motions are within

the quantum well, we cannot see such extended states as for a finite

potential height. As explained earlier, the parabolic behavior is almost

the same except for higher energies than before due to the infinite well.
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Figure Captions

1. Numerical solution for electron eigenenergy as a function of the orbit

center 0 with well width W - aH/ Th and potential height V0 - 5k.

2. Numerical solution for electron eigenenergy as a function of the orbit

center % with well width W - T//a H and potential height V0 - 10)4w.

3. Numerical solution for electron eigenenergy as a function of the orbit

center % with well width W - T2/aH and potential height V0 -
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